Human Face Recognition Using Radial Basis Function Neural Network

نویسنده

  • Javad Haddadnia
چکیده

A neural network based face recognition system is presented in this paper. The system consists of two main procedures. The first one is face features extraction using Pseudo Zernike Moments (PZM) and the second one is face classification using Radial Basis Function (RBF) neural network. In this paper, some new results on face recognition are presented. Simulation results indicate that PZM with RBF neural network produce higher detection and lower missing rates than several existing state-of-theart face detection systems, with an average false detection rate. Also experimental results show that high order degrees of PZM contain very useful information about face recognition process. The proposed system has been applied on face database of Olivetti Research Laboratory (ORL) with very good results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

N-feature neural network human face recognition

This paper introduces a novel method for human face recognition that employs a set of different kind of features from the face images with Radial Basis Function (RBF) neural network called the Hybrid N-Feature Neural Network (HNFNN) human face recognition system. The face image is projected in each appropriately selected transform methods in parallel. The output of the RBF classifiers are fused...

متن کامل

Face Recognition based on Radial Basis Function and Clustering Algorithm

This project consists of two parts. The first part is a general review of the previous and current research on human face recognition, including initial motivation, approaches, major problems and solutions, etc. The second part propose a new method for learning of radial basis function (RBF) neural networks which is based on subtractive clustering algorithm(SCA) and its application to face reco...

متن کامل

Face Recognition Methods Based on Feedforward Neural Networks, Principal Component Analysis and Self-Organizing Map

In this contribution, human face as biometric [1] is considered. Original method of feature extraction from image data is introduced using MLP (multilayer perceptron) and PCA (principal component analysis). This method is used in human face recognition system and results are compared to face recognition system using PCA directly, to a system with direct classification of input images by MLP and...

متن کامل

Multilayer Perceptron, Radial Basis Function Network, and Self–organizing Map in the Problem of Face Recognition

In this contribution, one and two-stage neural networks methods for face recognition are presented. For two-stage systems, the Kohonen self-organizing map is used as a feature extractor and multiplayer perceptron (MLP) or radial basis function (RBF) network are used as classifiers. The results of such recognition are compared with face recognition using a one-stage multilayer perceptron and rad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000